Date: 02/10/15 — Page 1/3

http://www.setabiomedicals.com e-mail: info@setabiomedicals.com Product number: K8-1342
Product name: Seta-670-NHS

General Data

Molecular Mass: 966.07

Solubility: Water, Alcohol, DMF, DMSO **Insoluble:** Acetone, Chloroform, Toluene

Storage: Store out of light, desiccated and refrigerate

Description

High hydrophilic, amine-reactive fluorescent label containing one reactive NHS-ester group

Applications

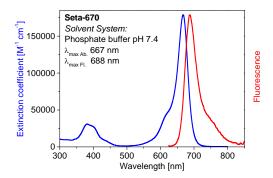
- · Covalent labeling of proteins, amino-modified DNA and amino-modified oligonucleotides
- Fluorescence Lifetime Label this label exhibits a distinct lifetime change upon binding to a biomolecule
- Fluorescence Resonance Energy Transfer (FRET) applications
- Single Molecule Applications Seta-670 shows extreme low blinking in single molecule measurements
- Flow Cytometry
- Immunofluorescence
- Gene Expression
- Homogeneous Assays
- · Assessment of protein structure

Advantages

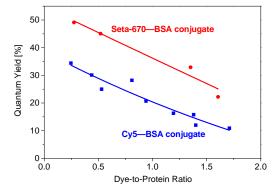
- Perfectly suited for excitation with the 380, 404, 635, 670-nm diode lasers, LEDs, and UV light
- Sensitive; high extinction coefficients and high quantum yields up to 50% after covalent attachment to proteins
- Quantum yield is highly increased after covalently attachment to proteins and other biomolecules
- pH-insensitive between pH 3 and pH 10
- Good aqueous solubility; this label does not alter the solubility of the protein conjugate
- High photostability; e.g. compared to fluorescein or Cy5[™]
- Low molecular weight Seta dyes do not add substantial mass to the conjugates
- Ideal for non-radioactive labeling of proteins, amino-modified DNA probes and amino-modified oligonucleotides

Product number: K8-1342
Product name: Seta-670-NHS

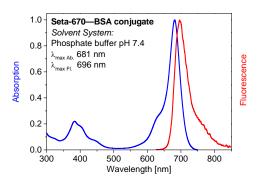
http://www.setabiomedicals.com e-mail: info@setabiomedicals.com

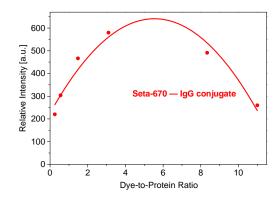

Spectral Data

Solvent System: phosphate buffer pH 7.4


Sample	Dye-to-protein Ratio	Absorption max. [nm]	Extinction Coefficient [M ⁻¹ cm ⁻¹]	Fluorescence max. [nm]	Quantum Yield ¹ [%]	Luminescence Lifetime at 25 °C [ns]
Free dye	_	667	180,000	688	7	0.42±0.03 ²
BSA conjugate 1	0.5	681		695	45	
BSA conjugate 2	1	681		696	36	
BSA conjugate 3	1.5	681		696	27	2.43±0.03 ³
IgG conjugate 4	1.0	673		693	12	
IgG conjugate 6	5.0	670		693	2	0.85±0.03 ⁴

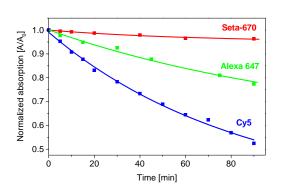
¹ Excitation at 635 nm. **Cy5** in phosphate buffer pH 7.4 (QY = 27% [1]) was taking as a reference.


⁴ Seta-670—IgG conjugate (D/P = 5.0) in phosphate buffer pH 7.4 vs. Alexa 647 in water (1.04 ns [2]); T = 25°C; ISS Chronos FD; excitation 635 nm (laser); bandpass filter 640 nm; longpass filter 670 nm; τ_{mean} = 0.85 ns; χ^2 = 2.35; τ_1 = 0.26 ns; τ_2 = 2.13 ns; f_1 = 0.69; f_2 = 0.31.

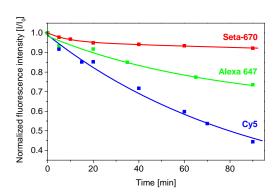

Absorption and emission spectrum of **Seta-670** in phosphate buffer (pH 7.4)

Quantum Yield vs. Dye-to-protein Ratio of **Seta-670** — **BSA conjugates** in phosphate buffer (pH 7.4)

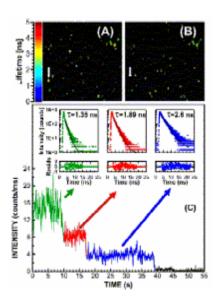
Absorption and emission spectrum of **Seta-670** — **BSA conjugate** in phosphate buffer (pH 7.4) (Dye-to-protein ratio 1.0)


Relative Intensity vs. Dye-to-Protein Ratio of **Seta-670** — **IgG conjugates** in phosphate buffer (pH 7.4)

² **Seta-670-Carboxy** in phosphate buffer pH 7.4 vs. **Alexa 647** in water (1.04 ns [2]); T = 25°C; ISS Chronos FD; excitation 635 nm (laser); bandpass filter 640 nm; longpass filter 670 nm; τ_{mean} = **0.42 ns**; χ^2 = 0.92; τ_1 = 0.38 ns; τ_2 = 1.32 ns; f_1 = 0.96; f_2 = 0.04.


³ Seta-670—BSA conjugate (D/P = 1.5) in phosphate buffer pH 7.4 vs. Alexa 647 in water (1.04 ns [2]); T = 25°C; ISS Chronos FD; excitation 635 nm (laser); bandpass filter 640 nm; longpass filter 670 nm; τ_{mean} = 2.43 ns; χ^2 = 2.17; τ_1 = 0.71 ns; τ_2 = 3.12 ns; f_1 = 0.29; f_2 = 0.71

Product number: K8-1342
Product name: Seta-670-NHS


http://www.setabiomedicals.com e-mail: info@setabiomedicals.com

Relative decrease of the long-wavelength absorption band of **Seta-670** as compared to **Cy5** and **Alexa 647** upon irradiation with a Xenon lamp

Relative decrease of the emission of **Seta-670** as compared to **Cy5** and **Alexa 647** upon irradiation with a Xenon lamp

<u>Single molecule applications:</u> <u>Seta-670-mono-NHS</u>, a dye that has been recently used in single molecule, homo-FRET measurements showed a remarkably low blinking effect which is an important factor in such measurements [1].

[1] Luchowski R., Matveeva E.G., Gryczynski I., Terpetschnig E.A., Patsenker L., Laczko G., Borejdo J., Gryczynski Z. Single molecule studies of multiple-fluorophore labeled antibodies. Effect of homo-FRET on the number of photons available before photobleaching. *Current Pharmaceutical Biotechnology*, 9, 411-420 (2008).

¹ R.B.Mujumdar, L.A.Ernst, S.R.Mujumdar, C.J.Lewis, A.S.Waggoner. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem. (1993) 4, 105–111.

² V.Buschmann, K.D.Weston, M.Sauer. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chem. (2003), 14, 195–204.